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Series Reference Guide

Intuitively, a series is an infinite sum:

∞∑
n=k

an = ak +ak+1 + . . . However, it is not possible to add an infinite string of numbers,

so the notion of an infinite sum is meaningless. What then is a series exactly? The precise definition that we use is

∞∑
n=k

an = lim
n→∞

(ak + ak+1 + . . .+ an).

The finite sum ak + . . .+ an is called the nth partial sum of the series and denoted Sn. With this notation, we can also write
∞∑

n=k

an = lim
n→∞

Sn.

If this limit exists (and is finite), we say the series converges to the value of the limit. Otherwise, we say the series diverges.

Note: We have used k as the starting index here. Usually, k is 0 or 1, but it could be any integer more generally.

Test Series Statement of Test When to Use Additional Comments

Divergence
Test

∑
an

If lim
n→∞

an ̸= 0,

the series diverges.

When you think
or know that

lim
n→∞

an ̸= 0

If lim
n→∞

an = 0, the test is

inconclusive, and the series
may or may not converge.

Telescoping
Series

∑
an+k − an

For telescoping series, the partial
sums are simple enough to

compute. So just find Sn and take
the limit as n → ∞ to determine if
the series converges or diverges.

If you see terms cancelling,
it’s a telescoping series.

Some algebraic manipulations (e.g.
partial fractions, properties of log, etc)
may be needed to get a series to be
in the form of a telescoping series.

Geometric
Series

∞∑
n=0

arn

or
∞∑

n=1

arn−1

If |r| < 1, the series
converges absolutely.

Else, the series diverges.

If it only involves constants
raised to powers involving n,
it’s probably a geometric

series.

A convergent geometric series

converges to:
1st term

1− r
=

a

1− r .

p-Series
∑ 1

np
If p > 1, the series converges.

Else, the series diverges.
When working with a

p-series

Integral
Test

∑
f(n)

f is
eventually:
positive,

continuous,
decreasing

Compute

∫ ∞

n
f(x) dx.

If the integral converges,
the series converges.

If the integral diverges,
the series diverges.

When f satisfies the
necessary conditions, and
the integral is doable.

If it’s not obvious that f is decreasing,
compute f ′ and show that f ′ < 0.

If the series converges to S,

then Rn = |S − Sn| ≤
∫ ∞

n
f(x) dx.

Direct
Comparison

Compare∑
an

and∑
bn,

an, bn ≥ 0

If an ≤ bn and∑
bn converges,

then
∑

an converges.

If bn ≤ an and∑
bn diverges,

then
∑

an diverges.

Often useful when
an ≥ 0 is a complicated
expression involving

trig terms.

To get something smaller to compare
with, make the numerator smaller
or the denominator larger. To get
something larger to compare with,
make the numerator larger or the
denominator smaller. Try to keep
the overall size of numerator and

denominator the same as in the original.

Limit
Comparison

Compare∑
an

and∑
bn,

an, bn ≥ 0

If lim
n→∞

an

bn
exists and

is positive and finite, then
both series behave the same,

i.e. they both converge
or they both diverge.

Often useful when
an ≥ 0 is a complicated
expression involving

algebraic or
exponential terms.

Given an, to find an appropriate bn
to compare with, take an and drop
the smaller expressions, keeping
only the largest expressions.

Alternating
Series

∑
(−1)nbn

bn ≥ 0

If lim
n→∞

bn = 0 and bn is

eventually decreasing,

the series converges.

When working with an
alternating series

If it’s not obvious, use derivatives
to show bn is decreasing.

If the series converges to S,

then Rn = |S − Sn| ≤ bn+1.

Ratio
Test

∑
an

Compute lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L.

If L < 1, the series
converges absolutely.

If L > 1, the series diverges.

When an has:
factorials

(e.g. n!, (2n+ 1)!, etc),

exponentials
(e.g. 2n, 3n+2, etc),

products
(e.g. 2 · 5 · . . . · 3n+ 2, etc)

If L = 1, the test is inconclusive.

Root
Test

∑
an

Compute lim
n→∞

n
√

|an| = L.

If L < 1, the series
converges absolutely.

If L > 1, the series diverges.

When an is a bunch of
stuff all raised to a
power involving n,
i.e. an = (bn)n.

If L = 1, the test is inconclusive.


