MATH 1326 Reference Guide

Differentiation

Differentiation Rules

$\underline{\text { Linearity }}$

$$
\begin{aligned}
\frac{d}{d x}[u+v] & =u^{\prime}+v^{\prime} \\
\frac{d}{d x}[c u] & =c u^{\prime}
\end{aligned}
$$

$\underline{\text { Product \& Quotient Rules }}$
$\frac{d}{d x}[u v]=u^{\prime} v+v^{\prime} u$
$\frac{d}{d x}\left[\frac{u}{v}\right]=\frac{u^{\prime} v-v^{\prime} u}{v^{2}}$

Derivative Identities

$$
\left.\begin{array}{rlrlrl}
\frac{d}{d x}[c]=0 & \frac{d}{d x}[x] & =1 & \frac{d}{d x}\left[x^{n}\right] & =n x^{n-1} & \frac{d}{d x}\left[e^{x}\right]
\end{array}=e^{x} \quad \frac{d}{d x}[\ln x]=\frac{1}{x}\right)
$$

Integration

Integration Rules

$$
\begin{array}{cl}
\text { Linearity } & \text { Integration by Parts } \\
\int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x & \int u d v=u v-\int v d u \\
\int a f(x) d x=a \int f(x) d x &
\end{array}
$$

Integral Identities

$$
\int 0 d x=C \quad \int d x=x+C
$$

$$
\int x^{n} d x=\frac{x^{n+1}}{n+1}+C, n \neq-1 \quad \int \frac{1}{x} d x=\ln |x|+C \quad \int e^{x} d x=e^{x}+C
$$

$$
\int(a x+b)^{n} d x=\frac{1}{a} \cdot \frac{(a x+b)^{n+1}}{n+1}+C, n \neq-1 \quad \int \frac{1}{a x+b} d x=\frac{1}{a} \cdot \ln |a x+b|+C \quad \int e^{a x+b} d x=\frac{1}{a} \cdot e^{a x+b}+C
$$

Fundamental Theorem of Calculus

$$
F^{\prime}(x)=f(x) \Longrightarrow \int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Functions of Two Variables

$2^{\text {nd }}$ Derivative Test

Compute $D=\left(f_{x x}\right)\left(f_{y y}\right)-\left(f_{x y}\right)^{2}$.
Let $\left(x_{0}, y_{0}\right)$ be a critical point.

- If $D\left(x_{0}, y_{0}\right)<0$, then $\left(x_{0}, y_{0}\right)$ is a saddle point.
- If $D\left(x_{0}, y_{0}\right)>0$, then...
- if $f_{x x}\left(x_{0}, y_{0}\right)>0$, then $\left(x_{0}, y_{0}\right)$ is a local minimum.
- if $f_{x x}\left(x_{0}, y_{0}\right)<0$, then $\left(x_{0}, y_{0}\right)$ is a local maximum.

$\underline{\text { Lagrange Multipliers }}$

Objective function: $f(x, y)$
Constraint: $g(x, y)=0$
$L(x, y, \lambda)=f(x, y)-\lambda g(x, y)$

1. Compute L_{x}, L_{y}, and set them equal to 0 .
2. Solve for λ in both $L_{x}=0$ and $L_{y}=0$.
3. Set the two expressions for λ equal to each other, and solve for x or y.
4. Substitute into the constraint equation.

Linear Differential Equations

$$
y^{\prime}+P(x) y=Q(x)
$$

Integrating Factor: $I(x)=e^{\int P(x) d x}$
Solution: $y=\frac{1}{I(x)}\left[\int Q(x) I(x) d x+C\right]$

Geometric Sequences \& Series

\quad Notation
$r=$ common ratio
$a=$ first term
$a_{n}=n^{\text {th }}$ term
$S_{n}=$ sum of first $_{n \text { terms }}$

$$
\begin{gathered}
\text { Formulas } \\
a_{n}=a r^{n-1} \\
S_{n}=\frac{a\left[1-r^{n+1}\right]}{1-r}
\end{gathered}
$$

Ordinary Annuities

$\underline{\text { Notation }}$
$R=$ payment per period
$i=$ interest per period
$n=$ number of periods
$P=$ present value
$S=$ total value
$y=$ remaining value
after x periods

$$
\begin{gathered}
\text { Formulas } \\
S=\frac{R\left[(1+i)^{n}-1\right]}{i} \\
P=\frac{R\left[1-(1+i)^{-n}\right]}{i} \\
y=\frac{R\left[1-(1+i)^{-(n-x)}\right]}{i}
\end{gathered}
$$

